THE JOURNAL OF ANTIBIOTICS

STUDIES ON β -LACTAM ANTIBIOTICS. II

SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIPS OF α -HYDROXYIMINOARYLACETYL CEPHALOSPORINS

Takao Takaya*, Hisashi Takasugi, Takashi Masugi Hiromu Kochi and Hiroshi Nakano

Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Osaka, Japan

(Received for publication May 22, 1981)

The synthesis and antibacterial activity *in vitro* of the 2-aryl-2-hydroxyiminoacetyl cephalosporins (2) are described. Within this cephalosporin series, analogs ($9f \sim 13f$) with 2-hydroxyimino-2-(3-hydroxyphenyl)acetyl group at the 7-position of a cephem nucleus were found to have the highest antibacterial activity against a wide-range of microorganisms, including β -lactamaseproducing bacteria. Structure-activity relationships of **2** are discussed.

Nocardicin A, found by IMANAKA¹⁾ from the fermentation broth of *Nocardia uniformis* subsp. *tsuyamanensis* ATCC 21806, is a new single β -lactam antibiotic with a unique acyl side chain (Fig. 1). It is active against Gram-negative bacteria, especially against *Pseudomonas aeruginosa*, and highly stable to β -lactamases derived from various species of bacteria²⁾. Thus this finding gave us an important clue to develop a new family of cephalosporins (2)^{3,4)} bearing the 2-aryl-2-hydroxyiminoacetyl** side chain at the 7-position of a cephem nucleus.

Recently, the Glaxo group has reported the synthesis and assignment of *syn*- and *anti*-isomers of 7β -(2-hydroxyiminophenylacetamido)cephalosporanic acid, obtained by condensation of 7-aminocephalosporanic acid (7-ACA) with α -dichloroacetoxyiminophenylacetic acid.^{5,6)} Development of this work to thienyl and furyl analogs led to the discovery of cefuroxime.

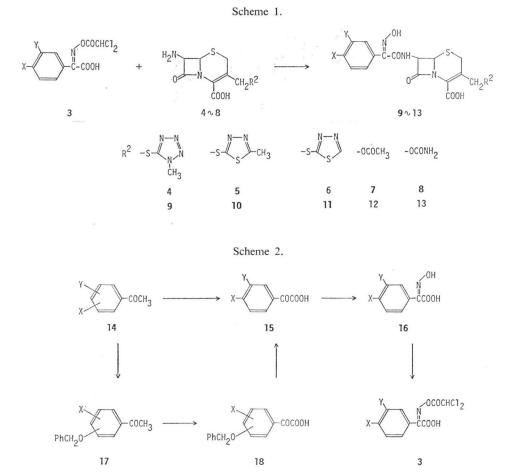
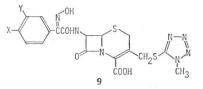

In this paper, we report the chemistry and *in vitro* antimicrobial profile of these cephalosporins (2) as well as some *in vitro* structure-activity correlation studies. Similar to the *syn-anti* structure-activity

Fig. 1. Fig. 1. HOOCCHCH₂CH₂O-(-)

** There exist two possible configurations with respect to the hydroxylimino group, in terms of syn and anti, or Z and E.

R ¹ -C-CO-	R ¹ -C-CO-
∥ N–OH	HO-N
syn (Z)	anti (E)

The assignment of *syn*-configuration is based on analogies with nocardicins^{θ}) and other oxyiminoacetyl derivatives^{2,3}) by reference to the NMR spectra of those oximes.

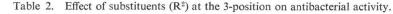

relationship for nocardicins,^{7,8)} a *syn*-isomer of (oxyiminoacetyl)cephems always had greater antibacterial activity than an *anti*-isomer.^{3~6)} Therefore we here discuss the *in vitro* activity of the cephalosporins (**2**) with *syn*-configuration.

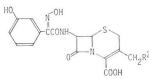
Chemistry

As outlined in Scheme 1, the novel hydroxyiminoacetyl cephalosporins ($9 \sim 13$) were prepared by acylation of 7-aminocephalosporanic acid and its analogs with different 3-substituents with 2-aryl-2-dichloroacetoxyiminoacetic acids (3). The acids (3) were converted to the corresponding acid chlorides with PCl₅ or activated with VILSMEIER reagent for the above coupling reaction. Activation with VILSMEIER reagent, prepared from dimethylformamide (DMF) and phosphoryl chloride (POCl₃) or thionyl chloride (SOCl₂) was the most satisfactory method used for coupling the 7-aminocephems ($4 \sim 8$) with the oxyiminoacetic acids (3) bearing a phenolic hydroxyl function. In order to facilitate acylation of the 7-aminocephems ($4 \sim 8$) under non aqueous conditions, $4 \sim 8$ were solubilized in an organic solvent by trimethylsilylation using *O*,*N*-bis(trimethylsilyl)acetamide (BSA) or *N*-(trimethylsilyl)acetamide (MSA).

Scheme 2 summarizes the synthesis of various side-chain acids (16). Substituted arylglyoxylic acids (15) were prepared by oxidation of acetophenones (14) with selenium dioxide (SeO₂)-pyridine.^{10,11)} In oxidation of the acetophenones (14, Y=OH) bearing a phenolic hydroxyl function, however, protection

Table 1. Effect on antibacterial activity of substitution in the phenyl ring.


	Compoun	ds				Μ	IC (mcg/ml)		
	X	Y	S. a 206	ureus 278	<i>E</i> . 324	coli 352ª)	K. pneumoniae 417	P. mirabilis 501	P. vulgaris 601
9a	н	Н	0.2	0.39	0.2	3.13	0.78	3.13	6.25
9b	Н	Cl	0.1	0.2	1.56	12.5	3.13	12.5	6.25
9c	Cl	Н	0.2	0.2	6.25	50	12.5	100	50
9d	Η	F	0.2	0.39	0.39	6.25	1.56	12.5	6.25
9e	F	Н	0.39	0.39	3.13	25	3.13	12.5	12.5
9f	H	OH	0.39	0.78	0.1	1.56	0.39	3.13	12.5
9 g	OH	Н	0.39	0.78	0.2	6.25	0.39	0.78	6.25
9h	Н	OCH ₃	0.2	0.39	1.56	25	3.13	12.5	25
9i	OCH ₃	Η	0.78	0.78	6.25	50	12.5	50	50
9j	н	CH_3	0.2	0.39	0.78	12.5	3.13	25	12.5
9k	CH_3	Η	0.39	0.39	3.13	25	6.25	25	25
91	H NI	HSO ₂ CH ₃	0.78	1.56	0.78	25	1.56	6.25	12.5
9m	NHSO ₂ CH	H_{8} H	0.78	1.56	0.39	50	1.56	6.25	6.25
9n	Н	CF ₃	0.2	0.2	12.5	100	12.5	50	25
90	Н	SO_2NH_2	0.78	0.78	0.2	12.5	0.78	3.13	6.25
9p	SCH ₃	Н	0.2	0.39	6.25	25	12.5	50	50
9q	OH	OCH ₃	0.39	0.78	0.78	12.5	0.39	6.25	6.25
9r	OH	Cl	0.78	0.78	0.2	3.13	0.39	0.78	6.25
9s	OH	NO_2	0.78	0.78	0.39	3.13	0.39	0.2	12.5
9t	OH NI	HSO ₂ CH ₃	1.56	1.56	0.39	12.5	0.39	3.13	12.5


a) Cephalosporinase producer

of the hydroxyl group with benzylhalide was utilized. Oxidation of the *O*-benzyl derivatives (17) with SeO₂-pyridine gave the corresponding arylglyoxylic acids (18), which were debenzylated with HClacetic acid to provide the hydroxyarylglyoxylic acids (15f, g, q, r, s, t). *Syn*-2-aryl-2-hydroxyiminoacetic acids (16) were predominantly prepared from the α -ketoacids (15) and hydroxylamine by the modified methods of AHMAD¹²⁾ and the Glaxo group.^{5,6)} The dichloroacetoxyiminoacetic acids (3) were prepared by acylation on 16 with dichloroacetyl chloride,^{5,6)} in order to protect the hydroxyimino group prior to activation of a carboxyl group in 3 using VILSMEIER reagent or PCl₅.

Biological Results and Discussion

The *in vitro* activity of the cephalosporins ($9a \sim 9t$) against selected Gram-positive and Gram-negative organisms is shown in Table 1. Structure-activity relationships associated with 7-acyl side chain variation are conveniently dealt with keeping 3-substituent (\mathbb{R}^2) constant as the *N*-methyltetrazolylthiomethyl group which is known to give most favorable antimicrobial activity against Gram-negative bacteria. The following structure-activity relationships are derived from the Table 1. i) The 7β -[2-hydroxyimino-2-(substituted phenyl)acetamido]cephalosporins have much more potent activity against Gram-

(Compounds	MIC (mcg/ml)												
	\mathbb{R}^2		<i>S. aureus</i> 206 278		coli 352 ^{a)}	K. pneumoniae 417	P. mirabilis 501	P. vulgaris 601						
9f	-s-KN-N CH3	0.39	0.78	0.1	1.56	0.39	3.13	12.5						
10f	-S-K_S-CH3	0.39	0.78	0.1	1.56	0.2	3.13	3.13						
11f	-s-K	0.2	0.39	0.1	1.56	0.2	1.56	3.13						
12f 13f	$-OCOCH_3$ $-OCONH_2$	0.78	0.78 0.78	0.2	3.13 1.56	0.1	0.78 0.39	12.5 6.25						

a) Cephalosporinase producer

positive bacteria than against Gram-negative bacteria. ii) The *meta* substituted phenyl derivatives are more active than the corresponding *para* derivatives against Gram-negative bacteria.* However, there is little difference in activity against Gram-positive between the *meta* and *para* substituted derivatives. iii) In comparison with the unsubstituted phenyl derivative, introduction of a hydroxyl or sulfonamide function into the phenyl ring enhances the activity against Gram-positive. However, other substituents tend to reduce the antibacterial activity. Substitution of both *meta* and *para* positions in the phenyl ring reduces slightly the activity against both Gram-positive and Gram-negative bacteria.

In this series, the influence of various 3-substituents of the cephem nucleus on antibacterial activity was also examined by keeping the 7-acyl side chain constant as the 2-(3-hydroxyphenyl)-2-hydroxyiminoacetyl radical. Their *in vitro* activity can be seen in Table 2. The cephem (**11f**) with 1,3,4-thiadiazolyl group shows the best activity against *Staphylococcus aureus*. The analog (**13f**) with a carbamoyloxy group exhibits the best activity against *Proteus* species. However, all of the cephems in Table 2 tend to show essentially little difference in activity against *Klebsiella pneumoniae* and *Escherichia coli*. It is noteworthy that all of these compounds exhibit good activity against Gram-negative bacteria such as the β lactamase producing *Escherichia coli* 352.

Experimental

Melting points were determined using a Thomas-Hoover capillary melting point apparatus and are uncorrected. NMR spectra were recorded at 60 MHz on a JNM-PMX 60 NMR spectrometer and at

^{*} The *ortho* derivatives with the *syn* configuration were difficult to isolate in pure form because of their labile isomerization to the corresponding *anti*-isomer.

100 MHz on a JEOL-MH 100 NMR spectrometer using Me_4Si as an internal standard. IR spectra were taken on a Hitachi 260-10 spectrophotometer or Shimadzu IR-420 spectrophotometer.

Antibiotic Susceptibility

All the *in vitro* antibacterial activity are given as the minimum inhibitory concentration (MIC) in mcg/ml, required to prevent growth of the bacterial culture. MIC was determined by agar dilution method using heart infusion agar (Difco) after incubation at 37°C for 20 hours and the inoculum size was about 10° C.F.U./ml. *E. coli* 352 is cephalosporin-resistant strain.

Preparation of 4-Benzyloxy-3-methanesulfonamidoacetophenone (17, X=NHSO₂CH₃)

To a solution of 4-benzyloxy-3-nitroacetophenone (17, X=NO₂) (40 g, 0.147 mole) in ethanol (800 ml) and H₂O (300 ml) Na₂S ·9H₂O (80 g) was added portionwise at 90°C, and the mixture was refluxed for 3 hours under stirring. The reaction mixture was concentrated to about 300 ml and the precipitates were filtered, washed with H₂O, and dried (P₂O₅) to give 25.5 g (71.8 %) of 3-amino-4-benzyl-oxyacetophenone (17, X=NH₂); mp 113~114°C (EtOH); IR (nujol) 3475, 3375, 1660 cm⁻¹; NMR (CDCl₃) δ 2.45 (3H, s), 4.00 (2H, br. s), 5.10 (2H, s), 6.84 (1H, d, J=8Hz), 7.28 (1H, dd, J=2, 8Hz), 7.29 (6H, m).

A solution of methanesulfonyl chloride (6.3 g, 0.064 mole) in methylene chloride (20 ml) was added dropwise to a mixture of $17 (X = NH_2)$ (12 g, 0.05 mole) and pyridine (8 g, 0.1 mole) in methylene chloride (100 ml) under ice-cooling for 30 minutes, and the reaction mixture was stirred at room temperature for 4 hours. After removing the solvent, H₂O was added to the residue and the resulting solution was adjusted to pH 1.0 with conc. HCl. The precipitates were filtered, washed with H₂O, and dried (P₂O₅) to give 15.4 g (96.6%) of 17; mp 124~126°C; IR (nujol) 3300, 1670, 1600, 1330, 1150 cm⁻¹; NMR (DMSO-d₆) δ 2.43 (3H, s), 2.90 (3H, s), 5.20 (2H, s), 7.10 (1H, d, *J*=8Hz), 7.30 (5H, br. s), 7.50 (1H, dd, *J*=2, 8Hz), 7.8 (1H, d, *J*=2Hz), 9.10 (1H, s).

General Preparation of Substituted Arylglyoxylic Acids (15)

Method A: To a solution of a substituted acetophenone (14) (0.1 mole) in pyridine (100 ml) SeO₂ (0.15 mole) was added portionwise at $60 \sim 70^{\circ}$ C, and the mixture was stirred at similar temperature for $5 \sim 8$ hours. After filtration, the filtrate was evaporated *in vacuo* to afford the residue, which was dissolved in a mixture of H₂O and ethyl acetate (AcOEt) with stirring. The separated aqueous layer was adjusted to pH 2.0 with 40% aqueous H₃PO₄, and extracted with AcOEt. The AcOEt layer was washed with brine, dried (MgSO₄), and evaporated to dryness. The residue was triturated with benzene or petroleum ether to afford a substituted arylglyoxylic acid (15).

Method B (in case of the acetophenone with a phenolic hydroxyl function): A mixture of a substituted acetophenone (14, Y=OH) (0.1 mole), benzyl chloride (0.105 mole), and K_2CO_3 (0.12 mole) in DMF (100 ml) was stirred at 100°C for an hour. The reaction mixture was poured into H₂O, and the aqueous solution was extracted with AcOEt. The separated AcOEt layer was washed with brine, dried (MgSO₄), and evaporated to dryness. The residue was recrystallized from an appropriate solvent to afford a benzyloxyacetophenone derivative (17) as crystal.

To solution of 17 (0.1 mole) in pyridine (100 ml) SeO_2 (0.15 mole) was added portionwise at 100°C with vigorous stirring. The reaction mixture was stirred at $100 \sim 110^{\circ}$ C for $3 \sim 5$ hours, and worked up in a similar manner to the Method A to give 18.

A mixture of **18** (0.1 mole) and conc. HCl $(1.0 \sim 1.2 \text{ mole})$ in acetic acid (120 ml) was refluxed for 3 hours. The reaction mixture was concentrated *in vacuo* to afford the residue, which was dissolved in AcOEt. The AcOEt solution was washed with brine, dried (MgSO₄), and evaporated. The residue was triturated with hexane or benzene to afford a substituted arylglyoxylic acid (**15**).

General Preparation of 2-Hydroxyimino-2-arylacetic Acid (16)

Method A: To a solution of 15 (0.01 mole) in aqueous NaHCO₃ solution (0.01 mole) was added an aqueous NH₂OH solution [prepared from NH₂OH·HCl (0.011 mole) and NaHCO₃ (0.011 mole) in H₂O], and the mixture was stirred at room temperature for $18 \sim 25$ hours. The reaction mixture was washed with diethyl ether. The separated aqueous layer was acidified to pH 1.0 with 10% HCl, and the acidified solution was extracted with AcOEt. The AcOEt layer was washed with brine and dried

			1	6			3	
	Method	Yield (%)	mp °C(dec.)	IR $\nu_{\max}^{\operatorname{Nujc}}$	1 (cm ⁻¹)	Yield (%)	IR ν_{\max}^{Nujo}	1 (cm ⁻¹
b	A	70.7	166	3170	1700	87.9	1755	
d	Α	84.1	159	3275	1705	92.0	1754	
e	В	84.0	144	3250	1698	82.4	1770	
f	A	80.1	122	3200	1700	94.8	1760	1730
g	A	92.0	156	3250	1690	91.4	1770	1740
h	В	56.9	150	3300	1715	87.5	1750	
i	В	63.0	137	3250	1730	93.0	1780	1725
j	A	93.8	150	3275	1715	94.0	1785	1750
k	А	94.4	151	3175	1695	84.1	1750	
1	В	75.6	141	3250	1702	81.2	1772	1735
m	Α	62.0	156	3250	1730	91.0	1780	1730
n	в	77.2	164	3210	1700	77.0	1790	1720
0	A	45.0	162	3250	1705	84.5	1785	1740
р	Α	60.0	138	3250	1705	90.0	1770	1750
q	A	72.1	156	3250	1710	87.3	1795	1705
r	Α	84.9	162	3350	1730	85.0	1730	1700
S	A	81.3	95	3300	1725	*		
t	A	93.3	172	3300	1710	*		

Table 3. Physical data and yields of 3 and 16.

* This compound was not isolated.

 $(MgSO_4)$. The solvent was evaporated and the residue was crystallized or triturated with an appropriate solvent to afford 2-hydroxyimino-2-arylacetic acid (16) as crystal or powder.

Method B: To a 1 N methanolic solution of NH_2OH (0.011 mole) **15** (0.011 mole) was added under ice-cooling, and the mixture was refluxed for $10 \sim 30$ minutes. After removing the solvent *in vacuo*, the residue was dissolved in 1 N NaOH solution, and worked up in a similar manner to the Method A to give **16**.

General Preparation of 2-Dichloroacetoxyimino-2-arylacetic Acid (3)

To a solution of dichloroacetyl chloride (0.04 mole) in methylene chloride ($20 \sim 30$ ml) **16** (0.01 mole) was added under ice-cooling, and the mixture was stirred at room temperature for $20 \sim 60$ minutes. Hexane was added to the reaction mixture under ice-cooling to form precipitates, which were collected by filtration. The dichloroacetoxyiminoacetyl derivatives (**3**) obtained above were used for the coupling reaction without further purification.

General Procedure for Acylation of $4 \sim 8$

Acid Chloride Method: To a suspension of 3 (0.01 mole) in methylene chloride $(20 \sim 30 \text{ ml})$ was added PCl₅ (0.01 mole) under ice-cooling, and the reaction mixture was stirred at similar temperature for $30 \sim 60$ minutes. The resultant solution was evaporated *in vacuo*. The residue was dissolved in methylene chloride to produce an acid chloride solution of 3. To a solution of 4 (0.01 mole) and BSA (0.03 ~ 0.04 mole) or MSA (0.06 ~ 0.08 mole) in methylene chloride ($30 \sim 40$ ml) was added the above acid chloride solution at -20° C, and the reaction mixture was stirred at $-20 \sim 0^{\circ}$ C for an hour. After removing the solvent, the residue was dissolved in a mixture of H₂O and AcOEt. To the separated AcOEt layer was added H₂O, and the mixture was adjusted to pH 7.0 with a saturated NaHCO₃ solution. The aqueous layer was acidified to pH 2.0 with 10% HCl, and extracted with AcOEt. The AcOEt solution was washed with brine, and dried (MgSO₄). The solvent was evaporated and the residue was triturated with Et₂O to afford 9.

VILSMEIER Reagent Method: A mixture of DMF (0.011 mole) and POCl₃ (0.011 mole) was heated at $40 \sim 50^{\circ}$ C for 30 minutes to prepare VILSMEIER reagent. To a suspension of the above VILSMEIER

	Compo	ounds				NMR	(DMSO-a	l_6, δ)			IR ν_{\max}^{Nujo1} (cm ⁻¹)			
9	Х	Y	=N-OH 1H,s	CONH 1H,d J=9Hz	C_7 -H 1H,dd J=5,9Hz	C_{6} -H 1H,d J=5Hz	C_3 -CH ₂ 2H,dd J=13Hz	2H,dd	N–CH ₃ 3H,s	Ring protons	=N-OH	β-Lactam		CONH
a	Н	Н	11.65	9.68	5.79	5.20	4.31	3.72	3.90	7.3~7.8 5H, m	3200	1770	1710	1665
b	Н	Cl	11.92	9.72	5.86	5.20	4.34	3.75	3.95	7.4~7.70 4H,m	3250	1770	1710	1660
c	Cl	Н	11.80	9.65	5.80	5.15	4.30	3.73	3.95	7.5 4H,m	3230	1775	1710	1660
d	Н	F	11.94	9.78	5.90	5.23	4.37	3.76	3.95	7.1~7.8 4H,m	3275	1775	1715	1670
e	F	Н	11.63	9.65	5.82	5.15	4.30	3.80	3.91	7.5~7.80 4H,m	3200	1770	1710	1665
f	Н	OH	11.60	9.60	5.85	5.17	4.36	3.77	3.96	6.7~7.5 4H,m	3250	1770	1710	1670
g	ОН	Н	11.25	9.57	5.85	5.17	4.32	3.73	3.95	6.80 2H,d, J=9Hz 7.43 2H,d, J=9Hz	3250	1770	1710	1660
h	Н	OCH ₃	11.63	9.65	5.82	5.13	4.30	3.70	3.92	7.10 4H, m 3.72 3H, s	3250	1770	1710	1660
i	OCH_3	Н	11.40	9.65	5.87	5.20	4.35	3.75	3.93	7.55 2H,d, <i>J</i> =12Hz 7.00 2H,d, <i>J</i> =12Hz 3.80 3H, s	3250	1775	1705	1660
j	Н	CH_3	11.62	9.66	5.88	5.20	4.33	3.74	3.93	7.1~7.6 4H, m 2.32 3H, s	3250	1775	1710	1665
k	CH_3	Н	11.48	9.58	5.82	5.16	4.30	3.70	3.92	7.10 2H,d, <i>J</i> =7Hz 7.43 2H,d, <i>J</i> =7Hz 2.31 3H, s	3260	1770	1710	1665
1	Н	NHSO ₂ CH ₃	12.11	9.55	5.82	5.13	4.28	3.67	3.86	9.81 1H, s 6.95~7.70 4H,m 2.95 3H, s	3250	1775	1710	1665
m	NHSO ₂ CH ₃	Н	11.55	9.65	5.95	5.18	4.31	3.72	3.90	7.21 2H,d, <i>J</i> =9Hz 7.50 2H,d, <i>J</i> =9Hz 3.02 3H, s	3250	1770	1705	1660

Table 4. NMR and IR spectral data of $9a \sim t$.

ONH	
665	
675	
670	
660	
665	
670	

rable 4. continued	Ta	ble	4.	continued
--------------------	----	-----	----	-----------

	С	ompounds				NMR	(DMSO-a	l_6, δ)			IR $\nu_{\rm max}^{\rm Nujo1}$ (cm ⁻¹)			
9	Х	Y	=N-OH 1H,s	CONH 1H,d J=9Hz	C_7 -H 1H,dd J=5,9Hz	C_6 -H 1H,d J=5Hz	C_3 -CH ₂ 2H,dd J=13Hz	2H,dd	N–CH ₃ 3H,s	Ring protons	=N-OH			CONH
n	Н	CF ₃	12.00	9.76	5.88	5.20	4.33	3.75	4.00	7.55~8.05 4H,m	3200	1770	1710	1665
0	Н	$\mathrm{SO}_2\mathrm{NH}_2$	11.95	9.73	5.86	5.18	4.32	3.72	3.93	7.58~8.32 4H, m 7.47 2H, s	3250	1765	1705	1675
р	SCH_3	Н	11.55	9.65	5.78	5.15	4.32	3.75	3.97	7.45 2H,d, <i>J</i> =8Hz 7.35 2H,d, <i>J</i> =8Hz	3250	1775	1720	1670
q	ОН	OCH ₃		*	5.80***	5.18	4.15	3.53	3.93	6.6~7.3 3H,m	3200 2 3400	1770		1660
r	ОН	Cl	11.45	9.65	5.85***	5.20	4.32	3.75	4.00	7.45 1H,d,J=2Hz 7.40 1H,dd,J=2, 8Hz 7.00 1H,d,J=8Hz	3200 2 3400	1780	1710	1665
s	ОН	NO_2		**	5.79	5.15	4.15	3.60	3.97	6.66 1H,d,J=9Hz 7.50 1H,dd, J=2,9Hz 7.96 1H,d,J=2Hz	3300 2 3400	1780	1720	1670
t	ОН	$\rm NHSO_2CH_3$		*	5.70***	5.00	4.30	3.54	3.93	6.60 1H,d,J=8Hz 6.84 1H,dd, J=2,8Hz 7.50 1H,d,J=2Hz	3200 2 3400	1770		1660

* Na salt. NMR was measured with D_2O .

** NMR was measured with $D_2O + NaHCO_3$.

*** d, *J*=5Hz

THE JOURNAL OF ANTIBIOTICS

			1	NMR (DMS	$O-d_6, \delta)$								
Compounds R ²	=N-OH 1H,s	Ring protons 4H,m	CONH 1H,d J=9Hz	C ₇ -H 1H,dd <i>J</i> =5,9Hz	C_6 -H 1H,d J=5Hz	C_3 -CH ₂ 2H,dd J=13Hz	C_2 -H $_2$ 2H,dd J=18Hz	\mathbb{R}^2	=N-OH	IR ν_{ma}^{Nu} β -Lactam	J ^{o1} (cm ⁻¹) COOH		
10f -s-K_s-CH ₃	11.68	6.7~7.5	9.65	5.85	5.23	4.40	3.75	2.75 3H,s	3270	1770	1720	1660	
$11f \qquad -S - \sqrt[N-N]{S}$	11.50	6.7~7.5	9.57	5.85	5.16	4.42	3.70	9.5 1H,s	3200	1770	1710	1660	
2f –OCOCH ₃	11.65	6.7~7.5	9.60	5.85	5.18	4.87	3.75	2.0 3H,s	3200	1780	1720	1650	
13f $-OCONH_2^*$		7.0~7.25	i	5.85**	5.20	4.70	3.52		3200 2 3500	1765		1660	

Table 5.	NMR	and	IR	spectral	data	of 1	01~13f.
----------	-----	-----	----	----------	------	------	---------

* Na salt. NMR was measured with D₂O.
** d, J=5Hz

reagent in AcOEt (20~30 ml) was added 3 (0.01 mole) at -5° C, and the mixture was stirred at $-10 \sim -5^{\circ}$ C for 30~60 minutes to produce an activated acid solution of 3. To a solution of 7 β -amino-3-substituted cephalosporanic acid (4~8) (0.01 mole) and BSA (0.03~0.04 mole) or MSA (0.06~0.08 mole) in AcOEt (30~40 ml) was added the above activated acid solution at -20° C, and the reaction mixture was stirred at $-20 \sim 0^{\circ}$ C for an hour. The resultant mixture was washed with H₂O. To the separated AcOEt layer was added H₂O, and the mixture was adjusted to pH 7.0 with a saturated NaHCO₃ solution. The separated aqueous layer was then acidified to pH 2.0 with 10% HCl, and the acidified solution was extracted with AcOEt. The separated AcOEt layer was washed with brine, and dried (MgSO₄). The solvent was evaporated and the residue was triturated with Et₂O to afford 9~13.

Acknowledgement

We are indebted to Dr. M. NISHIDA and his coworkers for providing the biological data.

References

- 1) AOKI, H.; H. SAKAI, M. KOHSAKA, T. KONOMI, J. HOSODA, Y. KUBOCHI, E. IGUCHI & H. IMANAKA: Nocardicin A, a new monocyclic β -lactam antibiotic. I. Discovery, isolation and characterization. J. Antibiotics 29: 492~500, 1976
- NAKANO, H.; H. IMANAKA, M. NISHIDA & T. KAMIYA: A unique new antibiotic future trends in chemotherapy. Future Trend Therapeutics Vol. 1. XV, Futura Publishing Co., Inc., 1978
- TAKAYA, T.; H. TAKASUGI, T. MASUGI, T. CHIBA, K. TSUJI, H. KOCHI & H. NAKANO: Structure-activity relationships of ceftizoxime (FK 749) and its related compounds. 2nd Symposium on Medicinal Chemistry Abstract 81~84, Tokyo, Oct. 31, 1980
- 4) TAKAYA, T.; T. MASUGI, H. TAKASUGI & H. KOCHI: 7-(α,α-Di-substituted acetamido)-3-substituted-3cephem-4-carboxylic acids. Ger. Offen 2,604,207, Aug. 05, 1976 (Chem. Abst. 86: 55465m, 1977)
- GREGSON, M.; M. C. COOK & G. I. GREGORY: Cephalosporin and penicillin antibiotics. Ger. Offen 2,204, 060, Aug. 10, 1961 (Chem. Abst. 77: 126662a, 1973)
- 6) CHERRY, P. C.; M. C. COOK, M. W. FOXTON, M. GRERSON, G. I. GREGORY & G. B. WEBB: 7β-(α-Hydroxyimino-arylacetamido)-cephalosporanic acids and related compounds. Recent Advances in the Chemistry of β-Lactam Antibiotics. Chemical Society, Cambridge, England, 1977
- HOSODA, J.; T. KONOMI, N. TANI, H. AOKI & H. IMANAKA: Isolation of new nocardicins from Nocardia uniformis subsp. tsuyamanensis. Agric. Biol. Chem. 41: 2013 ~ 2020, 1977
- KURITA, M.; K. JOMON, T. KOMORI, N. MIYAIRI, H. AOKI, S. KUGE, T. KAMIYA & M. HASHIMOTO: Isolation and characterization of nocardicin B. J. Antibiotics 29: 1243 ~ 1245, 1976
- HASHIMOTO, M.; T. KOMORI & T. KAMIYA: Nocardicin A, a new monocyclic β-lactam antibiotic. II. Structure determination of nocardicins A and B. J. Antibiotics 29: 890~901, 1976
- DIETRICH, J.; J. HEIDER & H. WEGNER: Untersuchungen zur reaktivität von alkylgruppen heterocyclischer Verbindungen und ihrer funktionellen Derivate II. Oxydation von Alkyl-pyridin und Alkyl-chinolinen durch selen Dioxyd. Ann. Chem. 613: 153~170, 1958
- HATANAKA, M. & T. ISHIMARU: Synthetic penicillins. Heterocyclic analogs of ampicillin. Structureactivity relationships. J. Med. Chem. 16: 978~984, 1973
- AHMAD, A. & I. D. SPENSER: The conversion of α-ketoacids and of α-ketoacid oximes to nitriles in aqueous solution. Can. J. Chem. 39: 1340~1359, 1961